Small Ceramic Structural Components for Automotive Exhaust Sensors

C. Scott Nelson
Staff Research Engineer
Delphi Powertrain Products
Automotive engine sensors and actuators
Automotive exhaust sensors

• Exhaust Oxygen Sensors are key to improving fuel economy and reducing pollution

• Global volume of exhaust sensors
 • Current: ~200 million sensors/year
 • Future: (2021) ~280 million sensors/year

• Exhaust Sensors are exposed to severe environments
 • -60°C to +1000°C (1832°F) exhaust gas
 • Soot, acids, high amounts of water (liquid and vapor) and toxic fumes
 • High vibrations levels
 • Stone impacts
Sensor size is decreasing

- Exhaust sensors are being mounted in tight spaces
 - Motorcycles/mopeds
 - Lawnmowers
 - Tight locations on cars

- New technology sensors are 50% smaller in size
 - Higher Performance
 - Increased requirements
 - Lower cost
OEM customer requirements drives cost

- Unnecessary/outdated performance requirements can result in increased product prices

Example: Wire size/terminal pull

- Requirement: 20 gage wire
- 100 N Individual wire pull (based on wire size – not requirement)
- Increased terminal dimensions required to meet target
- Terminal creates thin walls in ceramic connector
- Thin walls require injection molding ceramic
- Component price increase
- Sensor price increase
Trend in automotive exhaust sensor ceramics
Where can your company contribute?

Smaller

- Products are getting smaller
- Tolerances need to decrease accordingly
- Tooling decreases in size
- Tooling increasing in complexity
- Wall thicknesses decrease

Stronger

- Thinner walls require stronger materials
- Smaller tooling increases wear rate
- Smaller components have higher stress
- Less defects can be tolerated
- More extensive FEA is required
- Higher strength raw material is required

Less Variation

- Enables meeting tight tolerance requirements
- Allows for increased wall thickness
- Better particle size control minimizes voids

Lower Cost

- Market pressure is driving final product price lower and localization
- Ceramic components are becoming a larger percentage of total component cost
Prototypes

• Complex parts often require iteration in order to perfect
• Prototypes are required for testing sensors on various tests
 • Typically need 1,000 to 2,000 parts during a development cycle
 • Require parts to be representative of final product
• Creative methods must sometimes be used to keep prototype cost down
 • Potentially using fast wear tooling
 • Alternative fabrication methods for less complex components
 • Alternative low cost suppliers/partnerships that specialize in low volume “production”
 • As customers, we do not want vendors to lose money on prototypes
 • While working with the customer in the development stage builds a critical engineering relationship, it does not guarantee future production business without a competitive price
Effect of not meeting process capability metrics

• World class suppliers
 • Strive to meet all dimensions with a Ppk of 2.0
 • Inform the customer which ones cannot meet 2.0 so negotiations can be made

Example Effect of Ppk on simple 2-contributor stack

- Defects Per Million Opportunities (DPMO)
- Cpk: Process Capability
- Ppk: Process Performance Capability
Supplier input is critical!

- Suppliers are the experts, we as your customers need your comments and feedback!
- If there are difficult areas of a design that will cause more variation or cost, please offer your suggestions
- Together we will win!